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Abstract. The introduction of local optical potential wells of a generalised Wood-Saxon 
(ws)  type in optical-model studies, and also in some developments of the energy density 
formalism, is necessary to deal with the moments of a Wood-Saxon distribution raised to 
a (in general non-integral) real power ( w s ) ~ .  

In this paper, the analytic structure of these moments 9 , , @ ( a ,  R )  is analysed. In fact, 
an expansion is derived for them that for intermediate and large values of x = R / a  reduces 
to a polynomial of order n in x. 

At the same time, rapidly converging series expansions are obtained in order to 
represent the coefficients appearing in this polynomial and, in addition, a recursion relation 
that makes their numerical computation easier is established. 

Finally, by assuming a ( W S ) ~  parametrisation, this polynomial is applied to the study 
of the A dependence of several quantities of relevance in the geometrical characterisation 
of density distributions and optical potential wells corresponding to medium-mass and 
heavy nuclei. 

1. Introduction 

Much effort in the past has been devoted to the study and interpretation of the scattering 
of 20-50 MeV CY particles from medium-mass nuclei [ 1-41. 

At forward angles this scattering process has been described with the optical model 
using complex weakly energy-dependent Wood-Saxon potentials. At intermediate and 
large angles, it turns out that the differential cross section is larger than might be 
expected by simple extrapolation of the results obtained at forward angles. This 
‘anomalous large-angle scattering’ (ALAS) (see references cited in [4]) could not be 
suitably explained with the optical model using conventional Wood-Saxon potentials. 

In order to surmount these difficulties within the optical model, in addition to 
folding potentials [5-71, phenomenological local spherical potentials of the form 

(1.1) 
(where Vc(r) stands for the nuclear Coulomb potential) have been introduced, whose 
real and imaginary parts have been parametrised with form factors of type 

where p may assume integral and non-integral values [8] (see also [4] and references 
therein). In  another type of modification, the real part of the potentials is represented 
by means of a spline function [9] or expanded in part (or in whole) by means of 
spherical Bessel functions [lo].  

When p = 1 in equation (1.21, the half-value radius RI,? and the surface thickness 
t ,  defined as W,(R , ,>)  = f  W,(O) (we set W ( r )  = VJ(r-1, i = 0, l ) ,  and the distance where 
W,(r )  falls from 90% to 10% of the central value W,(O), respectively, are just given 

U ( r = - Vofo( r ) - i VI f i  ( r 1 + VA r 

1 ; ( r ) = { l + e ~ p [ ( r - R , ) l a , l } - ~  i = o ,  1 (1.2) 
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by R l i 2 =  R and r 2 4 . 4 ~  and they are usually introduced in order to characterise the 
potential strength and shape, being closely related to the corresponding quantities for 
nuclear density. 

When /3 # 1, the parameters R, a, /3 are not those most readily related to experi- 
mentally significant quantities. Furthermore, the parameters RI,* and  t ,  given in this 
case by the expressions 

R, ,*= R + a  ln{21’P[1+exp(-R/a)]-1} 

10”P[ l+exp( -R /a ) ] -  1 
((F)l/@[ 1 + exp( -R /a ) ]  - 1 

r = a l n  - 

d o  not also seem appropriate quantities to characterise the potential strength and 
shape, even though they only show a small variation when /3 varies due, chiefly, to 
their being punctual functionals of W , ( r ) .  

Indeed, a suitable characterisation of the real and imaginary parts of optical-model 
potential wells should take into account all elements of their radial distribution (this 
also holds when /3 = 1) with a suitable weight function that changes continuously when 
W,(r )  varies (an  appropriate choice for it when W,(r )  is normalised to unity is 
[ 111 - d W, ( r ) / d r )  and such a characterisation must, necessarily, be of an  integral type. 
Thus a discussion of the geometrical properties of optical-model potential wells is 
better carried out, at least when a (ws)@ parametrisation represents an adequate 
description of the physical problem under consideration, in terms of quantities such 
as the central radius, the equivalent sharp radius, the equivalent R M S  (root-mean 
square) radius, the surface width, etc (cf [12], § 2.4), that are defined in terms of linear 
moments of the derivative of the normalised potential well W,( r )  = V , J (  r ) .  

It is therefore easy to see from the above considerations and from the analytic 
structure of the form factors J ( r )  (see equation (1.2)) that the functions 9, ,p (a ,  R )  
defined by the integral 

_ _  n 

are involved in optical-model studies. 
On the other hand, special types of such functions also appear in nuclear physics 

in relation to some developments of the energy density formalism [ 131. In fact, if the 
energy (the same holds for any other quantity as long as it can be expressed as a 
function of p (  r )  and its derivatives) of a nuclear system with a leptodermous saturating 
distribution function p (  r ) ,  i.e. such that Iim,+” p (  r )  = po,  1imr+= p (  r )  = 0, can be 
expressed by means of a function of p ( r )  and its derivatives, then it is possible to 
separate volume, surface and  higher effects by expanding this energy in powers of the 
ratio of the surface thickness to the radius of the system. 

Now if p ( r )  has a Fermi shape such an  expression for the energy will involve 
integrals of the type given in equation (1.4). 

It follows from the above considerations that it will be of interest to set up.suitable 
analytic expressions in order to determine the analytic structure of the functions 
gn,@(a ,  R ) ,  above all, when the parameter x = R / a  assumes large values. 

It is therefore easy to understand why the first steps towards the attainment of the 
analytic structure of the functions 9?n,P(a, R )  aimed to derive an  asymptotic expansion 
for them when x = R / a  is large, generalising a Sommerfeld expansion [14] in this 
form, valid when /3 = 1. To this end Krivine and Treiner [13, 141 expanded 9 n , P ( a ,  R )  
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as follows: 
Rfl+l 

Bn,p(a, R )  =-+ p n , p ( X ) +  Wn.p(X) x = R / a  
n + l  

where Pn.p(x) is a polynomial of order n in x, whose coefficients are given in terms 
of an integral (see equation (1.6)), and Wn,p(x)  is a function that goes to zero faster 
than any power of x-’  as x -* CO. 

It turns out, as will be shown in § 2, that the actual expansion for 9n ,P(a ,  R )  is 
actually of the form 

0~ r (p+ Y )  (--I)”-’ e-”.‘ 
+ n ! a n + ’ ( - l ) “  C ~ - -  x = R / a  

“ = I  r (p )  Y !  Y “ + ’  

where the coefficients A , ( @ )  are given by the integral 

(1.5) 

From a physical point of view, the importance of such an expansion for optical- 
model potential wells of a leptodermous type, like those considered above, lies in the 
fact that it can be taken as a basis for expanding physical parameters (of relevance in 
the geometrical characterisation of optical potential wells and nuclear density distribu- 
tion functions, as well as in the interpretation of experimental data) such as the central 
radius C or the RMS radius Q (see § 3) in powers of the skin coefficient a = b / v ,  as 
follows: 

c = ? ? ( 1 - a 2 -  . . . )  

Q=?- / ( l+$a2+ . . . )  CY = b / T  

where 7, b stand for the sharp radius (the most significant quantity in such a characteri- 
sation) and the surface width respectively. Such an expansion, together with the 
relationships (3.31) and (3.32), allows us to compare and correlate experimental data 
with those obtained theoretically and also to inter-relate some properties of the alluded 
potentials with the corresponding ones of their nuclear density distributions for 
medium-mass and heavy nuclei. 

On the other hand, as another example of the application of expression (2.5) (to 
which (1.5) reduces when R / a  takes intermediate and large values; cf 0 2),  in the 
above-mentioned work of Treiner et a1 [13] (see, for example, 0 3.4), use is made of 
such an expression in connection with the expansion of the so-called scaling and 
constrained incompressibility nuclear moduli K >  and K >  in powers of A-’” ( A  stands 
for the nuclear mass number). 

In  fact, by expressing these moduli as functions of the nuclear density distribution 
and its derivatives and assuming a Fermi shape, special types of functions 9 n , p ( u ,  R )  
appear in these expressions. 

The required expansions in powers of are obtained in [13] by use of both 
expression (2.5) and the approximation a / R  = ( U / F , ~ ) A - ~ ’ ~  with a and po constants, 

I t  should be pointed out in considering this aspect that such a procedure is erroneous 
since, as will be seen in 8 3, the actual expansion is obtained by use of expression 
(2.5) and Elton’s [ 151 approximation (see equation (3.12)). 

The material of this paper is organised as follows. 



2296 F J Fernandez Velicia 

In § 2 the expansion (1.5) for 9, ,P(a,  R) ,  as well as the polynomial to which it 
reduces when e-R'a << 1, is obtained. On the other hand, several functional expansions 
are derived for the coefficients A V (  p )  appearing in the above-mentioned expansions 
for 9n.P( a, R),  and their respective convergence properties are analysed. In addition, 
a recursion relation that makes the numerical computation of these coefficients easier 
is also established. 

In § 3, in order to gain some insight into the physical interpretation of (1.5) and 
the coefficients A,(p) the approximate polynomial for 9n,p(a ,  R )  is applied for the 
case of a leptodermous distribution function of type (ws)@ to the study of the A 
dependence of certain quantities of relevance in the characterisation of geometrical 
properties of density distribution functions and optical-model potential wells corre- 
sponding to medium-mass and heavy nuclei. 

2. Series expansions for 9 m , p ( a ,  R )  and A,(/?) 

In this section we propose to obtain functional series expansions, in terms of which 
9,,@(a, R )  and the coefficients A,@), defined in the preceding section, can be expressed. 

As a consequence of the physical interpretation of g n , @ ( u ,  R )  and A, (@) ,  let us 
assume throughout this paper that the parameters R, U and p in the expressions (1 -4) 
and (1.6) take only positive, real values. Moreover, it should be emphasised that we 
are primarily interested in those values of R and a for which the parameter x = R / a  
takes intermediate and large values. 

In order to achieve our purpose, we note that equation (1.4), after some easy 
transformations, can be brought to the form 

9n,P(a,  R )  =-+a"" n + l  Joa[s-( l - ( l + e - t ) p  1 ) (x-  dt  
R"+l 

x = R / a .  

Therefore, by use of the binomial series 

to expand the integrand of the last integral in equation (2.1), one has 

1 )(x - z ) ~ ]  dt  
R"+' 

n + l  
9n,P( U ,  R )  = -+ a n i '  

r(p + V )  (-I)"-' e-ux 
+ a n + l n ! ( - I ) "  --- x = R/a.  r(p) v !  V n + '  

(2.3) 

Finally, by use of the binomial expansion for (x * t ) " ,  equation (2 .3)  can be put 
into the form 

- 1) t "  dt  
R"+I 
n + l  

9n,p( a, R )  = -+ U " + '  

which can also be rewritten as shown in equation (1.5). 
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It should be pointed out that an expression similar to equation (1 .5)  has been 
obtained by Srivastava [ 161 (see his equations (1 1) and (13)).  However, Srivastava’s 
expression is marred by an error, as the factor ( - 1 ) ”  in the last term does not appear 
in it. 

can neglect the last term in equation (1 .5)  and 9dn,P(a,  R )  can be approximated as 
follows: 

If e - R / o  is . small, as is the case for a leptodermous distribution function, then we 

(2.5) 

where the coefficients A,@)  are given by equation (1.6). 
Notice that this approximation will be less appropriate for those nuclei with a 

strong asphericity, due to the fact that the transition regions of their corresponding 
distribution functions are relatively wider. 

is not small, as is the case for light nuclei, the error due to approximating 
9 , , p ( u ,  R )  by the expression (2.5) becomes large and it will therefore be inappropriate 
to represent these functions under these circumstances. 

On the other hand, if equation (2.5) or ( 1 . 5 )  is to be useful, then suitable expansions 
should be found in order to express the coefficients A,(p). One such expansion can 
be derived at once by substituting the binomial expansion (2.2) (with x=O)  for 
( 1  +e-‘)-’ in equation (1.6). In fact, doing so, one has after some easy calculations 
the following expression for A,(p): 

When 

Notice that if p = 1 ,  then A , ( @ )  may be expressed [17] in terms of the Riemann 
zeta function as follows: 

A,(  1 )  = [ 1 - ( - l )” ] (  1 -2-”)5(  V +  1 ) .  (2.7) 
Similarly, 9?Dn,P(a, R )  may be expressed in this case in terms of the Fermi-Dirac 

functions 9 , , ( R / a )  as follows: 

9 n , P ( a ,  R )  = ~ “ ~ ‘ n ! 9 , , ( R / a )  

It is easy to demonstrate that the series expansions in equation (2.6) converge 
absolutely and uniformly only when v +  1 > p and diverge (and therefore are unsuitable 
for representing the coefficients A , ( @ ) )  when v i  1 < p .  On the other hand, for p = 1 
and Y = 0 the convergence is only conditional. 

At the same time, we also see that, except for large values of v +  1 - p ,  such 
expansions do not have nice convergence properties. Hence it would be an advantage 
to derive an alternative series expansion endowed with better convergence properties 
than the one in equation (2.6). 

This can be accomplished by substituting the following expansions 

(2.86) 

valid for Vt E [0, E], in the integral of equation (1.6),  instead of using the binomial 
expansion considered above for ( 1  + 
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Doing so, we obtain after some easy transformations the following alternative 
expansion for A , ( @ ) :  

p = r ( i + p + s )  1 1 
A J P ) = ~ ? o  r ( i + p )  s !2”  

_ _  

where the coefficients a,”(P) may be defined 

k =O 

by the equivalent relationships 

(2.9) 

(2.10a) 

~ , : ( p ) = $ [ ~ ~  t ” ( l - e - ‘ ) s  e-O‘dt s=O, l ,  . . . .  (2. lob)  

These coefficients satisfy several recursion relations. The most important one, from 
a numerical point of view, is 

(2.11) 

a o ( P )  = U P Y + ’  v > o , s = o .  

This recursion is a rapid and powerful tool for evaluating a,”(P) and, consequently, 
it also allows us a rapid and  precise computation of the coefficients A , ( @ )  via expansion 
(2.9). 

On the other hand, by writing equation (2.10b) as 

it is easy to see that the following expression holds: 

(2.12) 

(2.13) 

Therefore it follows from this latter relationship that the expansion in equation 
(2.9) converges absolutely and uniformly Vp+p E (0,oo) for every finite value of v. 
Moreover, if R N ( p ,  v )  denotes the N-term remainder of this expansion, then it can 
be demonstrated that 

(2.14) --I ayN+;.ll(l) n (I+-). P 
N + l + P  2 m = O  l + m  

Hence the expansion in equation (2.9) has nice convergence properties in a wide 
interval of P.  In particular, for all those values of P in the interval [ 1,2] ,  in which 
we are chiefly interested (cf the recursion relation (2.22)), these convergence properties 
are excellent. It can also be shown that, after some easy calculations, this expansion 
can be transformed as follows: 

(2.15) 
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where the coefficients X : ( p ) ,  which may be expressed in terms of the coefficients 

X,Y(P) = (l /p"+')-fl ,Y(P) (2.16) 
d ( P )  by 

are given by the integral 

X ; ( p )  =: lom tY[l - ( 1  -e-')'] e-'' dt. (2.17) 

Now, equations (2.15) and (2.17) clearly reveal that A,(P), considered as a function 
of p, has a pole of order v + 1 at P = 0. 

To conclude this section, let us derive an interesting recursion relation satisfied by 
the coefficients A,(P). In fact, to this end we first note that, after some easy transforma- 
tions, equation (1.6) can be brought to the form 

and by partial integration of this equation, to the form 

Now, by inserting the relationship 

1 1 1 
t ( l + t ) P + ' - t ( l + t ) P  ( l + t ) ' + P  

into equation (2.18) (with P replaced by p + l ) ,  we obtain 

(2.19) 

(2.20) 

(2.21) 

Figure 1. Variation of the coefficients A , ( @ )  with @ in the interval [0 ,9 ]  for Y = 0, 1, . . . , 4 .  
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Finally, taking into account equation (2.19), we see at once from equation (2.21) 
that the coefficients A,(P) fulfil the recursion relation 

A , ( P +  l ) = h , ( P ) - ( l / P ) A , , ~ i ( P )  A - i ( P )  = 1 v = o ,  1 , .  . . . ( 2 . 2 2 )  

It should be emphasised that, by successive applications of this recursion, the 
problem of the evaluation of the coefficients A,(P) for P > 2 can be reduced to the 
problem of their evaluation for P E [ 1,2]. 

The variation of the first coefficients A,@) ,  VP E [0,9] has been displayed in 
figure 1. 

3. Applications 

In this section, by assuming a ( W S ) ~  parametrisation for the nuclear density distribution 
functions and optical-model potential wells corresponding to medium-mass and heavy 
nuclei, we shall apply the relationship (2.5) (found in the preceding section to represent 
the functions 9 , ,P (a ,  R )  when << 1) to the study of the A dependence of certain 
quantities of great experimental interest in the characterisation of the shape and extent 
of such density distributions and potential wells. 

As stated in the introduction, the parameters R, a and P (see equation (3.1)) are 
not, in this case, those most readily related to experimentally significant quantities. 
Certain functions of these parameters are more relevant and, therefore, it is interesting 
to obtain them explicitly. At the same time, it will allow us to gain some insight into 
the physical interpretation of the coefficients A , ( @ ) .  It should be borne in mind, 
however, that the present generalisation of the ws parametrisation may itself not be 
an adequate description of the physical problem under consideration in some cases. 

Let us thus assume that the nuclear matter in a spherical nucleus of mass number 
A may be represented by a leptodermous density distribution function of the form 

where po,  r, R and P are positive real parameters. Then, from the normalisation 
condition 

A = 4 r  l o m p ( r ) r 2 d r  (3.2) 

and from equations (1.4) and (3.1), we obtain 

A = 47vO%,p(a, R).  (3.3) 
Now if as supposed, 1, by making use of relationship (2.5) it is possible 

to transform this equation as follows: 

( ~ / P o ) A - ~ / ~  ( a / R )  -Ao(P)(a/R)’-2(A,(P) - h Z o ( p ) ) ( ~ / R ) ~  

- ~ ( A , ( P )  - 4~ l ( ~ ) ~ o ( ~ )  + S A ~ P ) ) ( ~ /  R ) ~  

+4(2A2(P)Ao(P) +2A:(P) - 7 A , ( P  )AZo(P ) ) ( a /  R )’ + . . . 

,L~ = ( $ ~ p ~ ) - ” ~  (3.5) 

(3.4) 
where 

and the terms indicated by dots are O ( ( U / R ) ~ ) .  
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Therefore by inverting expansion (3.4) one has for a / R  

a a’ 

PO Po 

a 

Po 
l + A o ( ~ ) - A A - ” ’ + 2 A , ( P ) ~ A - 2 ”  

(3.7) 

It should be noticed that in the approximation under consideration the half-value 
radius RIl2 and the surface thickness t are given by the relationships (see equations 
(1.3)) 

RI,’ = R + a lr1(2”~ - 1) 

(3.8) 

The integral counterparts of the punctual quantities Rl12 and t are the central radius 
C and the surface width b, respectively, which are defined in terms of the surface 
distribution 

in the following way [ 11,121: 

C = low g ( r ) r  dr 

b2 = jo* g( r ) ( r  - C)’ dr. 

Hence from equations (3.9)-(3.11), and (1.4), one has 
C = [l + e ~ p ( - R / a ) ] ~ d , . ~ ( a ,  r )  

and 

(3.9) 

(3.10) 

(3.1 1) 

(3.12) 

b2 = 2[ 1 + exp( -R/a) ]Pdl ,P(a ,  R )  - [ 1 + e ~ p ( - R / a ) ] ~ ~ 9 ; , ~ ( a ,  R) .  (3.13) 
Therefore in the approximation under consideration it follows from equation (3.12) 
and the relationships (2.5) and (3.7) for C, and from equation (3.13) and these 
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relationships for b, that 

(3.14) 

and 
b z (2A,(P) -A;(P))’”a. (3.15) 

( I t  should be noticed that b is independent of the mass number A in this approximation, 
i.e. a is a constant. This result can only be valid as an average since b must obviously 
be affected by shell structure and nuclear deformations.) 

The next quantities of interest are the equivalent rharp radius 7 and the R M S  radius 
Q, respectively defined by the expressions 

p ( r ) r 2  d r  5: [I - e x p ( - ~ / a ) ] ~  
f 7 3  = 

Po 
and 

5 j: p( r ) r4  d r  
Q2‘;jT p ( r ) r 2 d r ’  

(3.16) 

(3.17) 

Therefore, taking into account equation (3.1) and (1.4), we have 

f 7 3  = [1  + e x p ( - ~ / a ) ] ~ ~ ~ , ~ ( a ,  R )  (3.18) 
and 

(3.19) 

Hence in the approximation under consideration it follows from equations (3.18) 
and (3.3) for 7, and from equations (3.19) and (3.3) and the expressions (2.5) and 
(3.7) for Q, that 

7 -- P ~ A ” ~  (3.20) 
and 

U S  
+275A:(P)Ao(P) - ~ A l ( P ) A ~ ( P ) + ~ A ~ ( P ) )  7 . .). (3.21) 

P 0 

We see from equations (3.14), (3.20) and (3.21) that the quantity of greatest interest 
is 7. By rewriting its defining expression (3.16) as 

[ 1 + exp( - R / a ) l P  
0 = 4 ~  IOx ( 

Po 
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where e( 77 - r )  stands for the step function, it follows at once that 77 represents the 
radius of a uniform sharp distribution, having the same bulk value and the same 
volume integral as the distribution ( l /po)[l  +exp(-R/a) lPp(r) .  

The quantities RIl2 and C are often used to characterise nuclear densities and 
optical-model potential wells. C and b are properties of nuclear distributions that can 
be determined by electron scattering experiments [ 181. Finally, Q is of interest because 
it is a property of nuclear distributions that can be directly derived from p-meson 
atom experiments [ 191. 

If P = 1, i.e. in the case of a Fermi distribution, expressions (3.6), (3.7), (3.19) and 
(3.21) reduce (see equation (2.7)) to 

( a /  R )  2: ( ~ / P ~ ) A - ’ / ~ (  1 +- 1 7 r 2 a 2  +- 1 - r 4 a 4  A-4/3+0(A-2)) (3.22) 
3 Po 9 CL: 

(3.23) 

(3.24) 

Expressions (3.23) and (3.24) are just Elton’s formulae (6) and (7) [15]. Note, 
however, that his expression (7), corresponding to our Q, is incorrect since relationship 
(A4) in the appendix of his paper, from which (7) is derived, is unfortunately marred 
by an error. 

On the other hand, by taking into account equation (3.20) and the skin coefficient 
6/77 given by the expression 

( b / ~ )  = (2Ai(P) - A ~ ( P ) ) ” 2 ( a / ~ o ) A - ’ / 3  (3.25) 

we can rewrite the expressions (3.14) and (3.21) in terms of 77 and 6/77 as follows: 

(3.26) 

(3.27) 

where the coefficients y 3 ( P ) ,  y 4 ( P )  and y 4 P )  are respectively given by the expressions 

(3.28) 

(3.29) 

By comparing (3.26) and (3.27) with Sussmann’s [ l l ]  expressions (5.12) and (5.13), 
we see at once that y 3 ( P ) ,  y 4 ( P )  and y @ )  are just the flair, crookedness and fifth 
shape coefficient of the surface distribution (3.9). Therefore, the combination of the 
coefficients A,(P) given by the expressions (3.28)-(3.30) provides us with additional 
information about the structure of the nuclear surface layer, i.e. with information 
different from position and size, which are obviously given by C and 6, respectively. 
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At this point, it is also convenient to emphasise that by fitting sufficient precise 
experimental data for the ratio CIA’/ ’  or Q/A”3 (obtained, for example, from electron 
scattering or p-meson atom experiments carried out with medium-mass and heavy 
nuclei) to expressions (3.26) or (3.27), it might, in principle, be possible to obtain the 
value of the parameter y 3 ( p )  and with it, through equation (3.28), to determine also 
the value of the exponent p in the nuclear distribution function p ( r ) .  

The earlier considerations with respect to the geometrical relationships apply equally 
well to optical-model potential wells. However, as Myers [12] points out, the main 
difference with respect to the case of nuclear distribution functions lies in the fact that 
the corresponding equivalent sharp radius r ]  is not now proportional to All3, i.e. 
equation (3.20) is not valid, since the normalisation condition (3.2) does not apply in 
this case. Myers finds that equations (3.20) and (3.15) should be replaced, in the case 
of optical-model potential wells, by the following relationships: 

r ]  = 1.16A1/3+0.45 (3.31)  

b = 1.13 (3.32) 

where r] ,  b are given in fm. 
The corresponding expansions for C and Q in powers of 

obtained by first deriving the expansion for the skin coefficient 
are now easily 

b/r] = l . l2A-”’( l  +0.39A-”’)-’ (3.33) 

and then substituting this expansion into the expressions (3.26) and (3.27). 
Another interesting point to be emphasised is the puzzling situation that happens 

when one admits that quantities such as RI /* ,  C or Q are strictly proportional to A’/’. 
This erroneous approach is found in a number of places. For example, in the paper 
of Treiner er a1 [13], referred to earlier, by assuming a nuclear distribution function 
of Wood-Saxon type, it is shown that the so-called scaling and constrained incompressi- 
bility nuclear moduli K A and K can be expressed in terms of the functions 92,p ( a ,  R )  
for different values of P.  Then in order to obtain the expansion of these coefficients 
in powers of A-’”, use is made of the expression (2.5) and the approximation 
R = poA1/3, so that the surface, curvature, etc, contributions to K A  and K >  are 
incorrectly calculated. The correct procedure for obtaining the actual values of these 
contributions should itwolve the use of expressions (2.5) and (3.23). 

On the other hand, it should be noticed that the nuclear distribution function (3 .1)  
under the conditions considered for in the present section, may be rewritten (see 
equations (3.7), (3.14), (3.151, (3.25) and (3.26)) in  terms of physically significant 
quantities, such as q and b, as follows: 

(3.34) 

S ( P I  = (2Ai(P)-A;(P))”*. (3.35) 

where 

Note, at the same time, the A i l 3  dependence of p ( r )  through r] (see equation (3.20)). 
Finally, to conclude this section, let us add some very brief comments in relation 

to the N ,  Z dependence of the equilibrium properties of nuclei. 
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As stated in a paper by Hilf and Wolff [20], in order to exhibit the gross trends of 
this dependence, the nuclear binding energy is described in macroscopic models as a 
balance of several driving and restoring forces, such as nuclear matter saturation, 
neutron excess, etc. Each of them can now be expressed in terms of quantitities of 
type 7, b, y 3 ( p ) ,  y.,(p), . . . , corresponding to neutron and proton distribution functions 
( a  functional form of type (3.1) can also be assumed for these distributions). In  the 
droplet model of Myers and  Swiatecki [21], the equilibrium is found by varying only 
one parameter, i.e. RI,?.  A more general model might be set up  that eventually includes 
the variation of 7, b and p. This question, however, deserves further study and will 
be discussed elsewhere. 

4. Conclusions 

Our main results in this paper can be summarised as follows. 
( i )  The analytic structure of the moments 9 n , P ( u ,  R )  has been suitably established 

by obtaining the correct series expansion for them, when a, R and p take all real and 
positive values. 

( i i )  When e-R’O << 1, this expansion reduces to a polynomial of order n in x = R / a .  
The analytic structure of its coefficients has also been established by deriving suitable 
converging series expansions for them. In addition, a recursion relation held by these 
coefficients, that makes their numerical computation easier, has also been found. 

(iii) The A dependence of certain quantities of relevance in the geometrical charac- 
terisation of density distribution functions and optical-model potential wells for 
medium-mass and heavy nuclei has also been studied and, on the basis of a density 
distribution of the form ( W S ) ~  and the use of this polynomial, several interesting 
relationships have been established for them. When p = 1, they reduce to the well 
known formulae of Elton. 

To conclude, we hope that the above mathematical results will be of help not only 
in optical-model studies and for the study of nuclei using the energy density formalism 
but also, by assuming a distribution of a generalised Fermi type, in other fields of 
physics, such as semiconductor band theory. 
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